On linear combinations of two idempotent matrices over an arbitrary field
نویسندگان
چکیده
منابع مشابه
Notes on linear combinations of two tripotent , idempotent , and involutive matrices that commute
The aim of this paper is to provide alternate proofs of all the results of our previous paper [2] in the particular case when the given two matrices A1 and A2 in the linear combination A = c1A1 + c2A2 commute.
متن کاملOn idempotent matrices over semirings
Idempotent matrices play a significant role while dealing with different questions in matrix theory and its applications. It is easy to see that over a field any idempotent matrix is similar to a diagonal matrix with 0 and 1 on the main diagonal. Over a semiring the situation is quite different. For example, the matrix J of all ones is idempotent over Boolean semiring. The first characterizatio...
متن کاملInvolutiveness of linear combinations of a quadratic or tripotent matrix and an arbitrary matrix
In this article, we characterize the involutiveness of the linear combination of the forma1A1 +a2A2 when a1, a2 are nonzero complex numbers, A1 is a quadratic or tripotent matrix,and A2 is arbitrary, under certain properties imposed on A1 and A2.
متن کاملA Note on Decomposing a Square Matrix as Sum of Two Square Nilpotent Matrices over an Arbitrary Field
Let K be an arbitrary field and X a square matrix over K. Then X is sum of two square nilpotent matrices over K if and only if, for every algebraic extension L of K and arbitrary nonzero α ∈ L, there exist idempotent matrices P 1 and P 2 over L such that X = αP 1 - αP 2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2010
ISSN: 0024-3795
DOI: 10.1016/j.laa.2010.03.023